Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin.

Identifieur interne : 001431 ( Main/Exploration ); précédent : 001430; suivant : 001432

Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin.

Auteurs : Akio Nakashima [États-Unis] ; Tatsuhiro Sato ; Fuyuhiko Tamanoi

Source :

RBID : pubmed:20144990

Descripteurs français

English descriptors

Abstract

Cellular activities are regulated by environmental stimuli through protein phosphorylation. Target of rapamycin (TOR), a serine/threonine kinase, plays pivotal roles in cell proliferation and cell growth in response to nutrient status. In Schizosaccharomyces pombe, TORC1, which contains Tor2, plays crucial roles in nutrient response. Here we find a nitrogen-regulated phosphoprotein, p27, in S. pombe using the phospho-Akt substrate antibody. Response of p27 phosphorylation to nitrogen availability is mediated by TORC1 and the TSC-Rhb1 signaling, but not by TORC2 or other nutrient stress-related pathways. Database and biochemical analyses indicate that p27 is identical to ribosomal protein S6 (Rps6). Ser235 and Ser236 in Rps6 are necessary for Rps6 phosphorylation by TORC1. These Rps6 phosphorylations are dispensable for cell viability. Rps6 phosphorylation by TORC1 also responds to availability of glucose and is inhibited by osmotic and oxidative stresses. Rapamycin inhibits the ability of TORC1 to phosphorylate Rps6, owing to interaction of the rapamycin-FKBP12 complex with the FRB domain in Tor2. Rapamycin also leads to a decrease in cell size in a TORC1-dependent manner. Our findings demonstrate that the nutrient-responsive and rapamycin-sensitive TORC1-S6 signaling exists in S. pombe, and that this pathway plays a role in cell size control.

DOI: 10.1242/jcs.060319
PubMed: 20144990
PubMed Central: PMC2823578


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin.</title>
<author>
<name sortKey="Nakashima, Akio" sort="Nakashima, Akio" uniqKey="Nakashima A" first="Akio" last="Nakashima">Akio Nakashima</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20144990</idno>
<idno type="pmid">20144990</idno>
<idno type="doi">10.1242/jcs.060319</idno>
<idno type="pmc">PMC2823578</idno>
<idno type="wicri:Area/Main/Corpus">001435</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001435</idno>
<idno type="wicri:Area/Main/Curation">001435</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001435</idno>
<idno type="wicri:Area/Main/Exploration">001435</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin.</title>
<author>
<name sortKey="Nakashima, Akio" sort="Nakashima, Akio" uniqKey="Nakashima A" first="Akio" last="Nakashima">Akio Nakashima</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
</author>
<author>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</author>
</analytic>
<series>
<title level="j">Journal of cell science</title>
<idno type="eISSN">1477-9137</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Gene Expression Regulation, Fungal (genetics)</term>
<term>Glucose (pharmacology)</term>
<term>Immunoprecipitation (MeSH)</term>
<term>Nitrogen (pharmacology)</term>
<term>Phosphorylation (drug effects)</term>
<term>Phosphorylation (genetics)</term>
<term>Ribosomal Protein S6 (metabolism)</term>
<term>Schizosaccharomyces (cytology)</term>
<term>Schizosaccharomyces (drug effects)</term>
<term>Schizosaccharomyces (genetics)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (genetics)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Signal Transduction (genetics)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Azote (pharmacologie)</term>
<term>Glucose (pharmacologie)</term>
<term>Immunoprécipitation (MeSH)</term>
<term>Phosphorylation (effets des médicaments et des substances chimiques)</term>
<term>Phosphorylation (génétique)</term>
<term>Protéine ribosomique S6 (métabolisme)</term>
<term>Protéines de Schizosaccharomyces pombe (génétique)</term>
<term>Protéines de Schizosaccharomyces pombe (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes fongiques (génétique)</term>
<term>Schizosaccharomyces (cytologie)</term>
<term>Schizosaccharomyces (effets des médicaments et des substances chimiques)</term>
<term>Schizosaccharomyces (génétique)</term>
<term>Schizosaccharomyces (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
<term>Transduction du signal (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ribosomal Protein S6</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glucose</term>
<term>Nitrogen</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Phosphorylation</term>
<term>Schizosaccharomyces</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phosphorylation</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Schizosaccharomyces</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Phosphorylation</term>
<term>Schizosaccharomyces</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphorylation</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Schizosaccharomyces</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéine ribosomique S6</term>
<term>Protéines de Schizosaccharomyces pombe</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Azote</term>
<term>Glucose</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Immunoprecipitation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Immunoprécipitation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellular activities are regulated by environmental stimuli through protein phosphorylation. Target of rapamycin (TOR), a serine/threonine kinase, plays pivotal roles in cell proliferation and cell growth in response to nutrient status. In Schizosaccharomyces pombe, TORC1, which contains Tor2, plays crucial roles in nutrient response. Here we find a nitrogen-regulated phosphoprotein, p27, in S. pombe using the phospho-Akt substrate antibody. Response of p27 phosphorylation to nitrogen availability is mediated by TORC1 and the TSC-Rhb1 signaling, but not by TORC2 or other nutrient stress-related pathways. Database and biochemical analyses indicate that p27 is identical to ribosomal protein S6 (Rps6). Ser235 and Ser236 in Rps6 are necessary for Rps6 phosphorylation by TORC1. These Rps6 phosphorylations are dispensable for cell viability. Rps6 phosphorylation by TORC1 also responds to availability of glucose and is inhibited by osmotic and oxidative stresses. Rapamycin inhibits the ability of TORC1 to phosphorylate Rps6, owing to interaction of the rapamycin-FKBP12 complex with the FRB domain in Tor2. Rapamycin also leads to a decrease in cell size in a TORC1-dependent manner. Our findings demonstrate that the nutrient-responsive and rapamycin-sensitive TORC1-S6 signaling exists in S. pombe, and that this pathway plays a role in cell size control.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20144990</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1477-9137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>123</Volume>
<Issue>Pt 5</Issue>
<PubDate>
<Year>2010</Year>
<Month>Mar</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of cell science</Title>
<ISOAbbreviation>J Cell Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin.</ArticleTitle>
<Pagination>
<MedlinePgn>777-86</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1242/jcs.060319</ELocationID>
<Abstract>
<AbstractText>Cellular activities are regulated by environmental stimuli through protein phosphorylation. Target of rapamycin (TOR), a serine/threonine kinase, plays pivotal roles in cell proliferation and cell growth in response to nutrient status. In Schizosaccharomyces pombe, TORC1, which contains Tor2, plays crucial roles in nutrient response. Here we find a nitrogen-regulated phosphoprotein, p27, in S. pombe using the phospho-Akt substrate antibody. Response of p27 phosphorylation to nitrogen availability is mediated by TORC1 and the TSC-Rhb1 signaling, but not by TORC2 or other nutrient stress-related pathways. Database and biochemical analyses indicate that p27 is identical to ribosomal protein S6 (Rps6). Ser235 and Ser236 in Rps6 are necessary for Rps6 phosphorylation by TORC1. These Rps6 phosphorylations are dispensable for cell viability. Rps6 phosphorylation by TORC1 also responds to availability of glucose and is inhibited by osmotic and oxidative stresses. Rapamycin inhibits the ability of TORC1 to phosphorylate Rps6, owing to interaction of the rapamycin-FKBP12 complex with the FRB domain in Tor2. Rapamycin also leads to a decrease in cell size in a TORC1-dependent manner. Our findings demonstrate that the nutrient-responsive and rapamycin-sensitive TORC1-S6 signaling exists in S. pombe, and that this pathway plays a role in cell size control.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nakashima</LastName>
<ForeName>Akio</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095-1489, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sato</LastName>
<ForeName>Tatsuhiro</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tamanoi</LastName>
<ForeName>Fuyuhiko</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 CA041996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA41996</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Cell Sci</MedlineTA>
<NlmUniqueID>0052457</NlmUniqueID>
<ISSNLinking>0021-9533</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D038601">Ribosomal Protein S6</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047468" MajorTopicYN="N">Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038601" MajorTopicYN="N">Ribosomal Protein S6</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
<ArticleId IdType="pii">jcs.060319</ArticleId>
<ArticleId IdType="doi">10.1242/jcs.060319</ArticleId>
<ArticleId IdType="pmc">PMC2823578</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Yeast. 2005 May;22(7):583-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15942936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 Sep 15;19(18):2199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Nov;58(4):1074-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16262791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2006 Jun;31(6):342-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Jun;173(2):569-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16624901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jul 21;281(29):19793-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16728407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2006 Nov 1;119(Pt 21):4475-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17046992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Sci Sports Exerc. 2006 Nov;38(11):1958-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17095930</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Feb;12(2):155-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17295836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2007 Jul 15;6(14):1692-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2007 Oct;13(10):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17905659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Nov;9(11):1263-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17952063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Feb 15;410(1):19-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18215152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Feb 15;283(7):4430-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18063581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2008 Feb 1;7(3):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18235227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2008 Jun 1;412(2):179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 May;279(5):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18219492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2008 Jul-Aug;43(4):277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2009 Feb;14(2):179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2009 Feb 10;7(2):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19209957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):8023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2009 Jun;21(6):827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19166929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Jun 1;122(Pt 11):1737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19417002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2009 May;14(5):539-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19371376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Oct;183(2):517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Jan 15;16(1):23-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10620772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):611-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Sep;11(9):3205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2001 Apr;19(4):348-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2001 May;18(7):657-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11329175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 May;39(3):166-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11409178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Sep;41(6):1339-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11580838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2002 Mar;131(3):391-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11872168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 21;277(25):22115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11994271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Jun;269(12):3076-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12071973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jun 15;16(12):1472-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12080086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Jul;161(3):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12136010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jul;10(1):151-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Sep;4(9):648-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Sep;4(9):699-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2003 Feb 7;301(2):417-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12565877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Apr 1;17(7):859-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12654728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 6;278(23):20457-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2003 Jun 16;22(12):3073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1457-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Aug 5;13(15):1259-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12906785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 10;278(41):39921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12869548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 26;279(13):12706-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14718525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2004 Aug 15;18(16):1926-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15314020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1987 Apr;7(4):1338-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3299046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Nov 25;18(22):6485-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2251111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;194:795-823</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2005825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Dec 23;269(51):32027-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7528205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 May 23;92(11):4947-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7539137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1995 Nov 17;270(46):27531-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7499212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1996 Jan 15;378(3):207-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8557102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Sep 15;10(18):2276-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8824587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Sep 15;10(18):2289-301</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8824588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6325-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1998 Jul;14(10):943-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9717240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1999 Jul;35(6):585-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10467002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Dec;168(4):1867-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15611163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2005 Feb;169(2):539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466417</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Sato, Tatsuhiro" sort="Sato, Tatsuhiro" uniqKey="Sato T" first="Tatsuhiro" last="Sato">Tatsuhiro Sato</name>
<name sortKey="Tamanoi, Fuyuhiko" sort="Tamanoi, Fuyuhiko" uniqKey="Tamanoi F" first="Fuyuhiko" last="Tamanoi">Fuyuhiko Tamanoi</name>
</noCountry>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Nakashima, Akio" sort="Nakashima, Akio" uniqKey="Nakashima A" first="Akio" last="Nakashima">Akio Nakashima</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001431 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001431 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20144990
   |texte=   Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20144990" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020